

SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

DOE Contract: DE-EE0003303

Project Officer: Ralph Nine

Navistar Principal Investigator: Russ Zukouski

DOE MERIT REVIEW

12 June, 2015

Project ID: ACE059

Program Overview

Timeline

Project Start:

October 2010

Project End:

Sept 2016

% Complete:

62%

Partners

Navistar Principal Investigator, Vehicle Systems

Integrator Controls Systems, Engine &

Vehicle Testing

Bosch Fuel Systems

Wabash Trailer Technologies

Argonne ANL Dual Fuel Engine testing, simulation

& evaluation

Lawrence LLNL Aerodynamic CFD

Barriers

Achieving 50% freight efficiency while balancing Voice of Customer Needs

Alignment with business needs

Reducing tractor weight while adding new systems

Budget

Total Funding: \$76,178,386

DOE: \$35,754,460

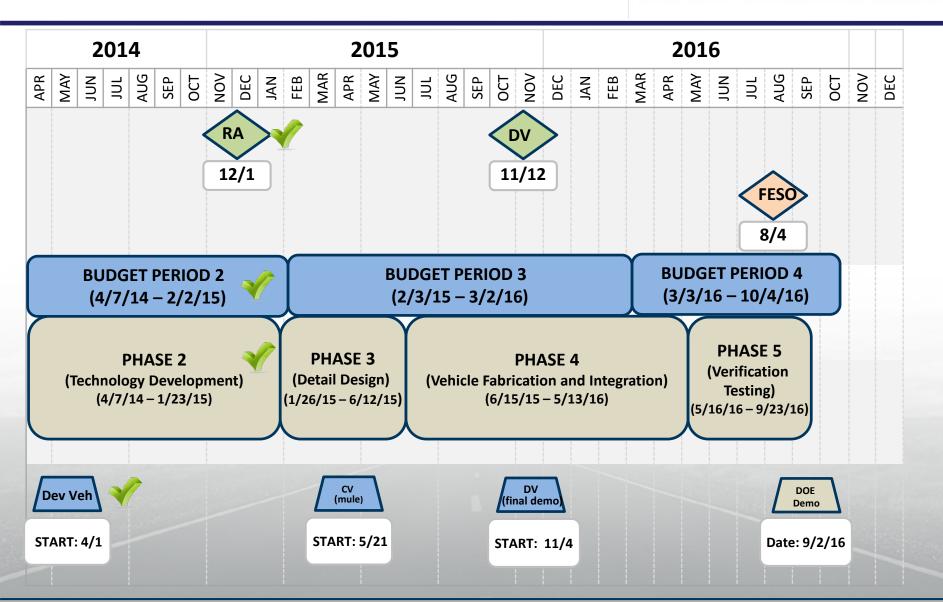
Prime: \$40,423,926

Funding FY2014 \$6,025,644

Funding for FY2015 \$8,965,646

Goals & Objectives - Relevance

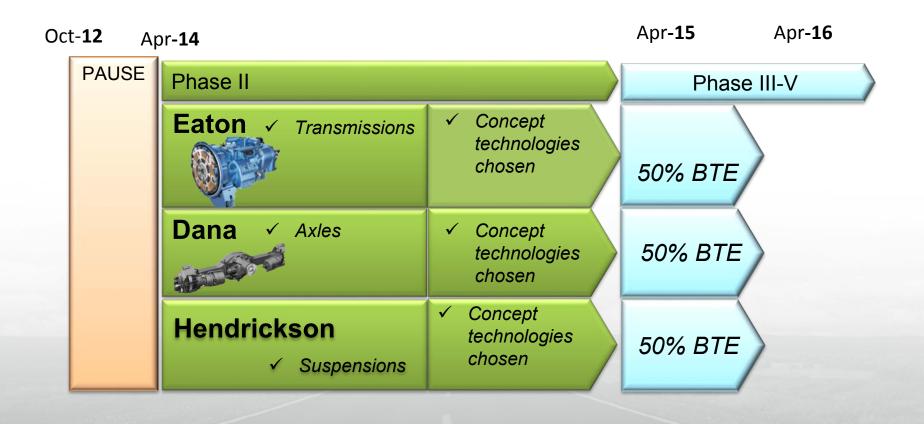
Project Goal


- Demonstrate 50% improvement in freight efficiency of a combination Tractor-Trailer
- Attain 50% BTE Engine
- Demonstrate path towards 55% BTE Engine

March 2014 to March 2015 Goals

- √ Restart / ramp up program after "Pause" period
- Re-evaluate technology concepts in lieu of original dual mode hybridization concept for vehicle
- √ Build & evaluate mule truck
- √ Complete Phase 2 (concept phase/ technology roadmap)

Program Timing


Vehicle Partnerships and Completed tasks

Vehicle Collaborators & Completed tasks

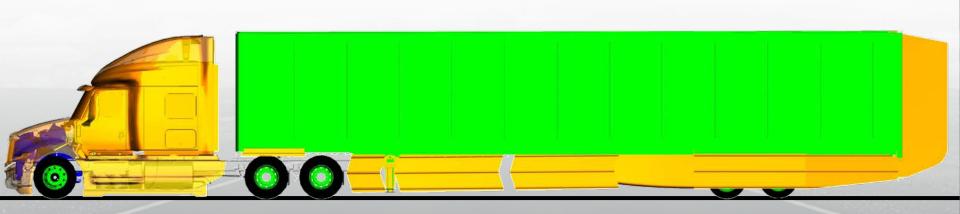
Technical Approach Four Distinct Areas of Development

Lightweighting

- Lightweight Frame
- Composite Materials
- Lightweight Trailer

Rolling Resistance

- **Energy Recovery**
- Reduced Parasitic


Aerodynamic Improvement

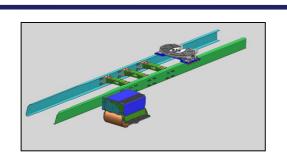
- Tractor
- Trailer

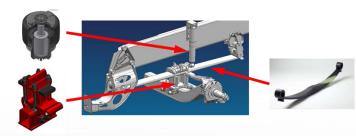
Powertrain Technologies

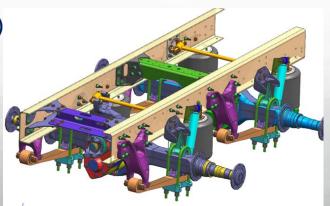
- High Efficiency Drivetrain
- Stop/Start Idle Reduction
- Waste Heat Recovery
- eTurbo
- Adv. After treatment
- Friction Reduction

Total Est. FE Improvement 50% +

Approach - Lightweighting




- Frame System (~.5-1% FE¹)
 - Frame w/ Lightening Holes
 - Aluminum Cross Members
- Wabash National Trailer (~4-5% FE¹)
- Hybrid Front Suspension (~.5-1% FE¹)
 - Aluminum Components
 - Composite Leaf Springs



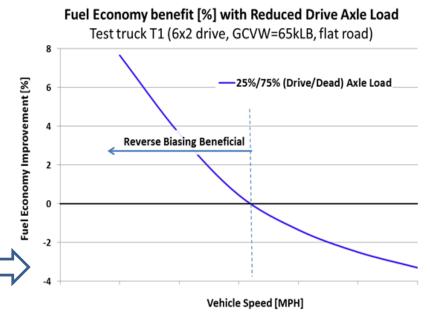
- Redesign
- Aluminum Cross members
- Composite Springs

- 1. Calculated, simulation or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

Approach - Lightweighting

- Tire & Wheel Equipment (~1-2% FE¹)
 - Wide Base Single Rear Tires
 - Aluminum Rims/Hubs
 - Steel Shell Brake Drums

- Lightweight Driveshafts and Axles (~1-2% FE¹)
 - 6x2 Configuration
 - "Diamond Series" Aluminum Driveshaft

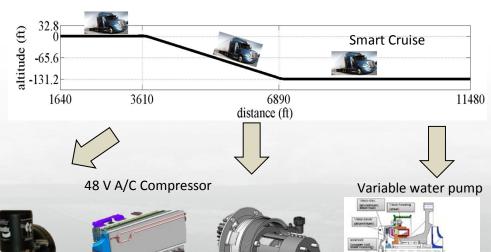


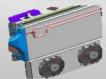
- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

Approach - Rolling Resistance Reduction Marie 1987

- Development truck was configured to evaluate new suspension technologies:
 - 6x2 configuration with axle load control
 - Liftable dead axle
- Tests were performed on a closed loop track
- Fuel economy was demonstrated due to reduced rolling resistance using load biasing

Approach - Rolling Resistance

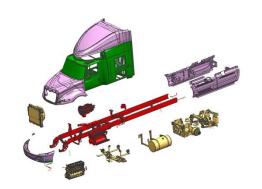

- Rolling Resistance (~7-8% FE¹)
 - Wide-Base Single Tires
 - Timken PDFE high efficiency bearings


- "Smart" Subsystems (~6-7% FE¹)
 - Cruise Control
 - High Temperature engine cooling
 - Air Compressor
 - Alternator /Generator
 - A/C compressor

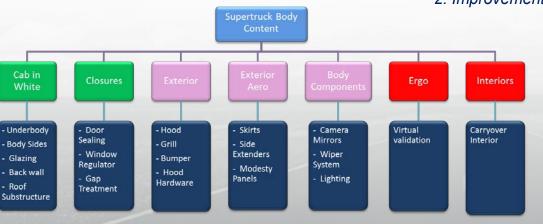
Single 4% downhill: 6.86% fuel saving, and 0.1% travel time increasing.


Integrated air compressor

3-Speed Fan Clutch


- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

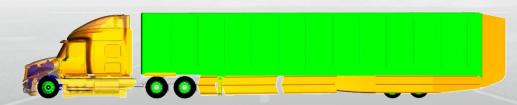
Approach - Aerodynamic Improvements



- Wind tunnel results
- Re-designed Cab and Aerodynamics
 - (10-12% FE¹)
 - Aerodynamic Improvements
 - Weight Reduction

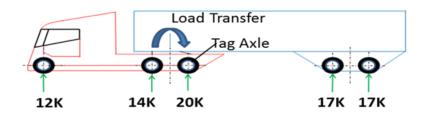
- All New Exterior Scope
- All New Cab in White
 - Modified
- Carryover

- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

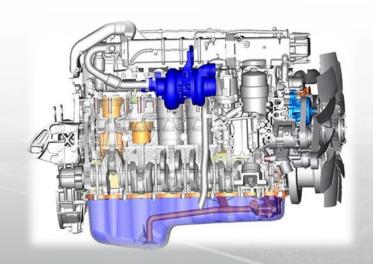

Approach - Aerodynamics Improvements

- Wind tunnel results
- Trailer Systems(~17-19% FE¹)
 - Trailer Boat Tail
 - Trailer Skirts
 - Trailer Bogie Treatment
 - Trailer Wheel Covers
 - Drive Wheel Covers
- Dynamic Pitch Control (~2-3% FE¹)
 - Trailer Bogie Height Reduction
 - Front Axle Height Reduction

Pitch Control



- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

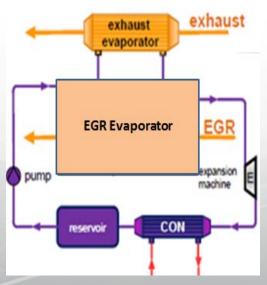

Approach - Powertrain Technologies

- Development truck results
 - 6x2 Drivetrain (~2-3.0% FE¹)
 - 6x2 Configuration
 - Direct-Drive Eaton UltraShift
 - Load Biasing Suspension

- 50% BTE engine development work
 - Currently at 48.3% in dyno cell
 - See engine presentation (ace059_zukouski_2015_o) for in-depth work on:
 - Combustion
 - Air System
 - Friction Accessories
 - Aftertreatment
 - WHR

- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

Approach - Powertrain Technologies



- Stop / Start technology includes
 - Long life starter
 - Software strategy
 - NiZn Batteries
 - Simulation shows

- WHR

- Estimated ~3-4% FE¹

ORC System

Route \ Metric	Weighted Impact
Kentucky	0.20%
Illinois	0.65%
Illinois City cycle	0.71%
Total	1.56%

- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle

2014-15 Accomplishments Four Distinct Areas of Progress

Lightweighting

- Lightweight Frame
- Composite
 Materials
- Lightweight Trailer

Rolling Resistance

- Energy Recovery
- Reduced Parasitic

Aerodynamic Improvement

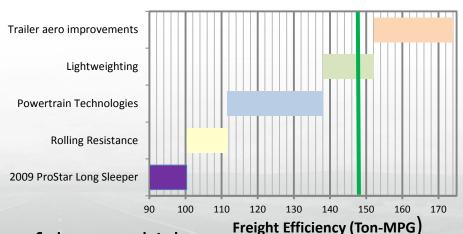
- Tractor
- Trailer

Powertrain Technologies

- High Efficiency Drivetrain
- Stop/Start Idle Reduction
- Waste Heat Recovery
- eTurbo
- Adv. After treatment
- Friction Reduction

Technology road map developed Recuperative Electric Charge: "Smart Charging" 48V Motor/Generator 48V Electric Navistar Designed Wake 48V NiZn Battery Storage Convergence Device Multi-Bus Battery Equalizer **Pitch Control** HVAC New Cab 48.3 BTE 2012 Lightweight (-1525 lbs) Aluminum **Engine** Wabash trailer 5th Wheel Aluminum' **High Temp Cooling Drive Wheel** Trailer Wheel **Drive Shaft** "Smart Cooling" Downsped Covers **Skirts** Updated Wabash **VWP** Bendix IAC 6x2 Axle (2015) slotted skirts VOP Clutched Compressor **Navistar Designed** Wide-Base E-Thermostat Dynamic Trailer Bogie Faring Single Tires Timken Low 3-Speed Fan Load Biasing Friction Bearings **Boiling Protection**

Future Work

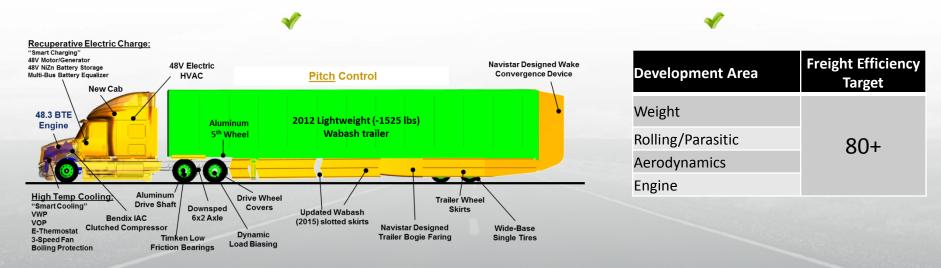


• 2015

- Target completion of development truck April / 2015
 - Validation plan: 2 months control development for axle Load Biasing and dynamic ride Height Control
- Target completion of development truck June / 2015
 - Enhanced Charging
 - Smart Cooling
 - Smart Cruise
 - 50% +BTE engine
 - Flectric HVAC
- Increasing collaborations

• 2016

- Build, final testing, & optimizing of demo vehicle
- Presentation to DOE



Navistar SuperTruck Freight Efficiency Plan

Project Summary

- √1. Several aerodynamic scale-models have been developed and evaluated in the wind tunnel. Significant improvement over the baseline vehicle has been observed which will be incorporated in final design
- √2. Initial load biasing evaluation completed
- √3. Concept material has been procured for mule vehicle test.
- √4. Current engine tested at a BTE of 48.3% with additional technologies still to deploy.
- √5. Technology concepts & targets established to move forward to Phase 3 (Design)

- 1. Calculated, simulation, or test data
- 2. Improvements shown relative to SuperTruck mule vehicle